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Abstract Poor study methodology leads to biased measurement of treatment effects in

preclinical research. We used available sunitinib preclinical studies to evaluate relationships between

study design and experimental tumor volume effect sizes. We identified published animal efficacy

experiments where sunitinib monotherapy was tested for effects on tumor volume. Effect sizes were

extracted alongside experimental design elements addressing threats to valid clinical inference.

Reported use of practices to address internal validity threats was limited, with no experiments using

blinded outcome assessment. Most malignancies were tested in one model only, raising concerns

about external validity. We calculate a 45% overestimate of effect size across all malignancies due to

potential publication bias. Pooled effect sizes for specific malignancies did not show apparent

relationships with effect sizes in clinical trials, and we were unable to detect dose–response

relationships. Design and reporting standards represent an opportunity for improving clinical

inference.

DOI: 10.7554/eLife.08351.001

Introduction
Preclinical experiments provide evidence of clinical promise, inform trial design, and establish the

ethical basis for exposing patients to a new substance. However, preclinical research is plagued by

poor design and reporting practices (van der Worp et al., 2010; Begley, 2013a; Begley and

Ioannidis, 2015). Recent reports also suggest that many effects in preclinical studies fail replication

(Begley and Ellis, 2012). Drug development efforts grounded on non-reproducible findings expose

patients to harmful and inactive agents; they also absorb scarce scientific and human resources, the

costs of which are reflected as higher drug prices.

Several studies have evaluated the predictive value of animal models in cancer drug development

(Johnson et al., 2001; Voskoglou-Nomikos et al., 2003; Corpet and Pierre, 2005). However, few

have systematically examined experimental design—as opposed to use of specific models—and its

impact on effect sizes across different malignancies (Amarasingh et al., 2009; Hirst et al., 2013).

A recent systematic review of guidelines for limiting bias in preclinical research design was unable to

identify any guidelines in oncology (Henderson et al., 2013). Validity threats in preclinical oncology

may be particularly important to address in light of the fact that cancer drug development has one of

the highest rates of attrition (Hay et al., 2014), and oncology drug development commands billions of

dollars in funding each year (Adams and Brantner, 2006).

In what follows, we conducted a systematic review and meta-analysis of features of design and

outcomes for preclinical efficacy studies of the highly successful drug sunitinib. Sunitinib is a multi-

targeted tyrosine kinase inhibitor sunitinib (SU11248, Sutent) and is licensed as monotherapy for three
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different malignancies (Chow and Eckhardt, 2007; Raymond et al., 2011). As it was introduced into

clinical development around 2000 and tested against numerous malignancies, sunitinib provided an

opportunity to study a large sample of preclinical studies across a broad range of malignancies—including

several supporting successful translation trajectories.

Results

Study characteristics
Our screen from database and reference searches captured 74 studies eligible for extraction,

corresponding to 332 unique experiments investigating tumor volume response (Figure 1, Table 1,

Table 1—source data 1E). Effect sizes (standardized mean difference [SMD] using Hedges’ g) could

not be computed for 174 experiments (52%) due to inadequate reporting (e.g., sample size not

provided, effect size reported as a median, lack of error bars, Figure 1—figure supplement 1).

Overall, 158 experiments, involving 2716 animals, were eligible for meta-analysis. The overall pooled

SMD for all extracted experiments across all malignancies was −1.8 [−2.1, −1.6] (Figure 2—figure

supplement 1). Mean duration of experiments used in meta-analysis (Figures 2–4) was 31 days

(±14 days standardized deviation of the mean (SDM)).

Design elements addressing validity threats
Effects in preclinical studies can fail clinical generalization because of bias or random variation (internal

validity), a mismatch between experimental operations and the clinical scenario modeled (construct

validity), or idiosyncratic causal mediators in an experimental system (external validity) (Henderson

et al., 2013). We extracted design elements addressing each using consensus design practices

identified in a systematic review of validity threats in preclinical research (Henderson et al., 2013).

eLife digest Developing a new drug can take years, partly because preclinical research on non-

human animals is required before any clinical trials with humans can take place. Nevertheless, only

a fraction of cancer drugs that are put into clinical trials after showing promising results in preclinical

animal studies end up proving safe and effective in human beings.

Many researchers and commentators have suggested that this high failure rate reflects flaws in

the way preclinical studies in cancer are designed and reported. Now, Henderson et al. have looked

at all the published animal studies of a cancer drug called sunitinib and asked how well the design of

these studies attempted to limit bias and match the clinical scenarios they were intended to

represent.

This systematic review and meta-analysis revealed that many common practices, like

randomization, were rarely implemented. None of the published studies used ‘blinding’, whereby

information about which animals are receiving the drug and which animals are receiving the control is

kept from the experimenter, until after the test; this technique can help prevent any expectations or

personal preferences from biasing the results. Furthermore, most tumors were tested in only one

model system, namely, mice that had been injected with specific human cancer cells. This makes it

difficult to rule out that any anti-cancer activity was in fact unique to that single model.

Henderson et al. went on to find evidence that suggests that the anti-cancer effects of sunitinib

might have been overestimated by as much as 45% because those studies that found no or little anti-

cancer effect were simply not published. Though it is known that the anti-cancer activity of the drug

increases with the dose given in both human beings and animals, an evaluation of the effects of all

the published studies combined did not detect such a dose-dependent response.

The poor design and reporting issues identified provide further grounds for concern about the

value of many preclinical experiments in cancer. These findings also suggest that there are many

opportunities for improving the design and reliability of study reports. Researchers studying certain

medical conditions (such as strokes) have already developed, and now routinely implement, a set of

standards for the design and reporting of preclinical research. It now appears that the cancer

research community should do the same.

DOI: 10.7554/eLife.08351.002
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Figure 1. Descriptive analysis of (A) internal, construct, and (B) external validity design elements. External validity

scores were calculated for each malignancy type tested, according to the formula: number species used + number

of models used; an extra point was assigned if a malignancy type tested more than one species and more than

one model.

DOI: 10.7554/eLife.08351.003

The following source data and figure supplement are available for figure 1:

Source data 1. (A) Coding details for IV and CV categories.

DOI: 10.7554/eLife.08351.004

Figure 1. continued on next page
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Few studies used practices like blinding or randomization to address internal validity threats

(Figure 1A). Only 6% of experiments investigated a dose–response relationship (3 or more doses).

Concealment of allocation or blinded outcome assessment was never reported in studies that

advanced to meta-analysis. It is worth noting that one research group employed concealed allocation

and blinded assessment for the many experiments it described (Maris et al., 2008). However,

statistics were reported in a way that did not align with those we needed to calculate SMD. We found

that 58.8% of experiments included active drug comparators, thus, facilitating interpretation of

sunitinib activity (however, we note that in some of the experiments, sunitinib was an active

comparator in a test of a different drug or drug combination). Construct validity practices can only be

meaningfully evaluated against a particular, matched clinical trial. Nevertheless, Figure 1A shows

that experiments predominantly relied on juvenile, female, immunocompromised mouse models, and

very few animal efficacy experiments used genetically engineered cancer models (n = 4) or

spontaneously arising tumors (n = 0). Malignancies generally scored low (score = 1) for addressing

external validity (Figure 1B), with breast cancer studies employing the greatest variety of species

(n = 2) and models (n = 4).

Implementation of internal validity practices did not show clear relationships with effect sizes

(Figure 3A). However, sunitinib effect sizes were significantly greater when active drug comparators

were present in an experiment compared to when they were not (−2.2 [−2.5, −1.9] vs −1.4 [−1.7,
−1.1], p-value <0.001).

Within construct validity, there was a significant difference in pooled effect size between

genetically engineered mouse models and human xenograft (p-value <0.0001) and allograft (p-value

0.001) model types (Figure 3B). For external validity (Figure 3C), malignancies tested in more and

diverse experimental systems tended to show less extreme effect sizes (p < 0.001).

Figure 1. Continued

Figure supplement 1. Descriptive analysis of (A) internal, construct, and (B) external validity design elements for all

experiments (n = 332) extracted for validity data parameters.

DOI: 10.7554/eLife.08351.005

Table 1. Demographics of included studies

Study level demographics Included studies (n = 74)

Conflict of interest

Declared 19 (26%)

Funding statement*

Private, for-profit 44 (59%)

Private, not-for-profit 35 (47%)

Public 37 (50%)

Other 2 (3%)

Recommended clinical testing

Yes 37 (50%)

Publication date

2003–2006 13 (18%)

2007–2009 17 (23%)

2010–2013 44 (59%)

*Does not sum to 100% as many studies declared more than one funding source.

DOI: 10.7554/eLife.08351.006

Source data 1. (C) Search Strategies. (D) PRISMA Flow Diagram. (E) Demographics of included studies at

qualitative level.

DOI: 10.7554/eLife.08351.007
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Evidence of publication bias
For the 158 individual experiments, 65.8% showed statistically significant activity at the experiment level

(p < 0.05, Figure 2—figure supplement 1), with an average sample size of 8.03 animals per treatment

arm and 8.39 animals per control arm. Funnel plots for all studies (Figure 4A), as well as our renal cell

carcinoma (RCC) subset (Figure 4B) suggest potential publication bias. Trim and fill analysis suggests an

overestimation of effect size of 45% (SMD changed from −1.8 [−2.1, −1.7] to −1.3 [−1.5, −1.0]) across all
indications. For high-grade glioma and breast cancer, the overestimation was 11% and 52%, respectively.

However, trim and fill analysis suggested excellent symmetry for the RCC subgroup, suggesting

coverage of the overall effect size and confidence intervals and not overestimation of effect size.

Preclinical studies and clinical correlates
Every malignancy tested with sunitinib showed statistically significant anti-tumor activity (Figure 2).

Though we did not perform a systematic review to estimate clinical effect sizes for sunitinib against

various malignancies, a perusal of the clinical literature suggests little relationship between pooled

effect sizes and demonstrated clinical activity. For instance, sunitinib monotherapy is highly active in

RCC patients (Motzer et al., 2006a, 2006b) and yet showed a relatively small preclinical effect;

in contrast, sunitinib monotherapy was inactive against small cell lung cancer in a phase 2 trial (Han et al.,

2013), but showed relatively large preclinical effects.

Figure 2. Summary of pooled SMDs for each malignancy type. Shaded region denotes the pooled standardized mean difference (SMD) and 95%

confidence interval (CI) (−1.8 [−2.1, −1.6]) for all experiments combined at the last common time point (LCT).

DOI: 10.7554/eLife.08351.008

The following source data and figure supplement are available for figure 2:

Source data 1. (B) Heterogeneity statistics (I2) for each malignancy sub-group.

DOI: 10.7554/eLife.08351.009

Figure supplement 1. Effect sizes for all included experiments (n = 158).

DOI: 10.7554/eLife.08351.010
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Figure 3. Relationship between study design elements and effect sizes. The shaded region denotes the pooled SMD and 95% CI (−1.8 [−2.1, −1.6]) for all
experiments combined at the LCT.

DOI: 10.7554/eLife.08351.011
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Using measured effect sizes at a standardized time point of 14 days after first administration (a different

time point than in Figures 2–4 to better align our evaluation of dose–response), we were unable to

observe a dose–response relationship over three orders of magnitude (0.2–120 mg/kg/day) for all

experiments (Figure 5A). We were also unable to detect a dose–response relationship over the full

dose range (4–80 mg/kg/day) tested in the RCC subset (Figure 5B). The same results were observed

when we performed the same analyses using the last time point in common between the experimental

and control arms.

Discussion
Preclinical studies serve an important role in formulating clinical hypotheses and justifying the advance

of a new drug into clinical testing. Our meta-analysis, which included malignancies that respond to

sunitinib in human beings and those that do not, raises several questions about methods and

reporting practices in preclinical oncology—at least in the context of one well-established drug.

First, reporting of design elements and data was poor and inconsistent with widely recognized

standards for animal studies (Kilkenny et al., 2010). Indeed, 98 experiments (30% of qualitative sample)

could not be quantitatively analyzed because sample sizes or measures of dispersion were not

provided. Experimenters only sporadically addressed major internal validity threats and tended not to

test indication-activity in more than one model and species. This finding is consistent with what others

have observed in experimental stroke and other research areas (Macleod et al., 2004; van der Worp

et al., 2005; Kilkenny et al., 2009; Glasziou et al., 2014). Some teams have shown a relationship

between failure to address internal validity threats and exaggerated effect size (Crossley et al., 2008;

Figure 4. Funnel plot to detect publication bias. Trim and fill analysis was performed on pooled malignancies, as well as the three malignancies with the

greatest study volume. (A) All experiments for all malignancies (n = 182), (B) all experiments within renal cell carcinoma (RCC) (n = 35), (C) breast cancer

(n = 32), and (D) colorectal cancer (n = 29). Time point was the LCT. Open circles denote original data points whereas black circles denote ‘filled’

experiments. Trim and fill did not produce an estimate in RCC; therefore, no overestimation of effect size could be found.

DOI: 10.7554/eLife.08351.012
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Rooke et al., 2011); we did not observe a clear relationship. Consistent with what has been reported in

stroke (O’Collins et al., 2006), our findings suggest that testing in more models tends to produce

smaller effect sizes. However, since a larger sample of studies will provide a more precise estimate of

effect, we cannot rule out that the trends observed for external validity reflect a regression to the mean.

Second, preclinical studies for sunitinib seem to be prone to publication bias. Notwithstanding

limitations on using funnel plots to detect publication bias (Lau et al., 2006), our plots were highly

asymmetrical. That all malignancy types tested showed statistically significant anti-cancer activity

strains credulity. Others have reported that far more animal studies report statistical significance than

would be expected (Wallace et al., 2009; Tsilidis et al., 2013), and our observations that two thirds of

individual studies showed significance extends these observations.

Third, we were unable to detect a meaningful relationship between preclinical effect sizes and

known clinical behavior. Although a full analysis correlating trial and preclinical effect sizes will be

needed, we did not observe obvious relationships between the two. We also did not detect

a dose–response effect over three orders of magnitude even within an indication—RCC—known to

respond to sunitinib and even when different time points were used. It is possible that heterogeneity

in cell lines or strains may have obscured the effects of dose. For example, experimenters may have

delivered higher doses to xenografts known to show slow tumor growth. However, RCC

patients—each of whom harbors genetically distinct tumors—show dose–response effects in trials

(Faivre et al., 2006) and between trials in a meta-analysis (Houk et al., 2010). It is also possible that

the toxicity of sunitinib may have limited the ability to demonstrate dose response, though this

Figure 5. Dose–response curves for sunitinib preclinical studies. Only experiments with a once daily (no breaks) administration schedule were included in

both graphs. Effect size data were taken from a standardized time point (14 days after first sunitinib administration). (A) Experiments (n = 158) from all

malignancies tested failed to show a dose–response relationship. (B) A dose–response relationship was not detected for RCC (n = 24). (C) Dose–response

curves reported in individual studies within the RCC subset showed dose–response patterns (blue diamond = Huang 2010a [n = 3], red square = Huang

2010d [n = 3], green triangle = Ko 2010a [n = 3], purple X = Xin 2009 [n = 3]).

DOI: 10.7554/eLife.08351.013
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contradicts demonstration of dose response within studies (Abrams et al., 2003; Amino et al., 2006;

Ko et al., 2010). Finally, the tendency for preclinical efficacy studies to report drug dose, but rarely

drug exposure (i.e., serum measurement of active drug), further limits the construct validity of these

studies (Peterson and Houghton, 2004).

One explanation for our findings is that human xenograft models, which dominated our meta-

analytic sample, have little predictive value, at least in the context of receptor tyrosine kinase

inhibitors. This is a possibility that contradicts other reports (Kerbel, 2003; Voskoglou-Nomikos

et al., 2003). We disfavor this explanation in light of the suggestion of publication bias; also,

xenografts should show a dose–response regardless of whether they are useful clinical models.

A second explanation is that experimental methods are so varied as to mask real effects. However, we

note that the observed patterns on experimental design are based purely on what was reported in

‘Materials and methods’ section. Third, experiments assessing changes in tumor volume might only be

interpretable in the context of other experiments within a preclinical report, such as with mechanistic

and pharmacokinetic studies. This explanation is consistent with our observation that studies testing

effect along a causal pathway tended to produce smaller effect sizes. A fourth possible explanation for

our findings is that the predictive value of a small number of preclinical studies was obscured by

inclusion of poorly designed and executed preclinical studies in our meta-analysis. Quantitative

analysis of preclinical design factors that confer greater clinical generalizability awaits side-by-side

comparison with pooled effects in clinical trials. Finally, it may be that design and reporting practices

are so poor in preclinical cancer research as to make interpretation of tumor volume curves useless.

Or, non-reporting may be so rampant as to render meta-analysis of preclinical research impossible.

If so, this raises very troubling questions for the publication economy of cancer biology: even

well-designed and reported studies may be difficult to interpret if their results cannot be compared to

and synthesized with other studies.

Our systematic review has several limitations. First, we relied on what authors reported in the

published study. It is possible certain experimental practices, like randomization, were used but not

reported in methods. Further to this, we relied only on published reports, and restriction of searches to

the English language may have excluded some articles. In February of 2012, we filed a Freedom of

Information Act request from the Food and Drug Administration (FDA) for additional preclinical data

submitted in support of sunitinib’s licensure; nearly 4 years later, the request has not been honored.

Second, effect sizes were calculated using graph digitizer software from tumor volume curves: minor

distortion of effect sizes may have occurred but were likely non-differential between groups. Third,

subtle experimental design features—not apparent in ‘Materials and methods’ sections—may explain

our failure to detect a dose–response effect. For instance, few reports provide detailed animal housing

and testing conditions, perhaps leading to important inter-laboratory differences in tumor growth. It

should also be emphasized that our study was exploratory in nature; findings like ours will need to be

confirmed using prespecified protocols. Fourth, our study represents analysis of a single drug, and it

may be our findings do not extend beyond receptor tyrosine kinase inhibitors, or sunitinib. However,

many of our findings are consistent with those observed in other systematic reviews of preclinical cancer

interventions (Amarasingh et al., 2009; Sugar et al., 2012; Hirst et al., 2013). Fifth, our analysis does

not directly address many design elements—like duration of experiment or choice of tissue

xenograft—that are likely to bear on study validity. Finally, we acknowledge that there may be funding

constraints that limit implementation of validity practices described above. We note, nevertheless, that

other realms, in particular, neurology, have found ways to make such methods a mainstay.

Numerous commentators have raised concerns about the design and reporting of preclinical

cancer research (Sugar et al., 2012; Begley, 2013b). In one report, only 11% preclinical cancer

studies submitted to a major biotechnology company withstood in-house replication (Begley and

Ellis, 2012). The Center for Open Science and Science Exchange has initiated a project that will

attempt to reproduce 50 of the highest impact papers in cancer biology published between 2010 and

2012 (Morrison, 2014). In a recent commentary, Smith et al. fault many researchers for performing in

vitro preclinical tests using drug levels that are clinically unachievable due to toxicity (Smith and

Houghton, 2013). Unaddressed preclinical validity threats like this—and the ones documented in our

study—encourage futile clinical development trajectories. Many research areas, like stroke, epilepsy,

and cardiology, have devised design guidelines aimed at improving the clinical generalizability of

preclinical studies (Fisher et al., 2009; Galanopoulou et al., 2012; Curtis et al., 2013; Pusztai et al.,

2013); and the ARRIVE guidelines (Kilkenny et al., 2010) for reporting animal experiments have been

Henderson et al. eLife 2015;4:e08351. DOI: 10.7554/eLife.08351 9 of 13
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taken up by numerous journals and funding bodies. Our findings provide further impetus for

developing and implementing guidelines for the design, reporting, and synthesis of preclinical studies

in cancer.

Materials and methods

Literature search
To identify all in vivo animal studies testing the anti-cancer properties of sunitinib (‘efficacy studies’),

we queried the following databases on 27 February 2012 using a search strategy adapted from

Hooijmans et al. (2010) and de Vries et al. (2011): Ovid MEDLINE In-Process & Other Non-Indexed

Citations and Ovid MEDLINE (dates of coverage from 1948 to 2012), EMBASE Classic and EMBASE

database (dates of coverage from 1974 to 2012) and BIOSIS Previews (dates of coverage from 1969 to

2012). Search results were entered into an EndNote library and duplicates were removed. Additional

citations were identified during the screening of identified articles. See Table 1—source data 1C,D

for detailed search strategy and PRISMA flow diagram.

Screening was performed at citation level by two reviewers (CF and VCH), and at full-text by one

reviewer (VCH). Inclusion criteria were (a) original reports or abstracts, (b) English language, (c) contained

at least one experiment measuring disease response in a live, non-human animals, and (d) employed

sunitinib in a control, comparator, or experimental context, (e) tested anti-cancer activity. To avoid

capturing the same experiment twice, in rare cases where the same experiment was reported in different

articles, the most detailed and/or recent publication was included.

Extraction
All included studies were evaluated at the study-level, but only those with eligible experiments (e.g.,

those evaluating the effect of monotherapy on tumor volume and that were reported with sample

sizes and error measurements) were forwarded to experiment-level extractions. We excluded

experiments when they had been reported in a previous publication after specifically searching for

duplicates during screening and analysis. For each eligible experiment, we extracted experimental

design elements derived from a prior systematic review of validity threats in preclinical research

(Henderson et al., 2013).

Details regarding the coding of internal and construct validity categories are given in

Figure 1—source data 1A. To score for external validity, we created an index that summed the

number of species and models tested for a given malignancy and awarded an extra point if more than

one species and model was tested. For example, if experiments within a malignancy tested two

species and three different model types, the external validity score would be 4 (1 point for the second

species, one point for the second model type, one point for the third model type, and an extra point

because more than one model and species were employed).

Our primary outcome was experimental tumor volume and we extracted necessary information

(sample size, mean measure of treatment effect, and SDM/SEM) to enable calculation of study and

aggregate level effect sizes. Since the units of tumor volume were not always consistent between

experiments, we extracted those experiments for which a reasonable proxy of tumor volume could be

obtained. These included physical caliper measurements (often reported in mm3 or cm3), tumor

weights (often reported in mg), optical measurements made from luminescent tumor cell lines (often

reported in photons/second), and fold differences in tumor volumes between the control and

treatment arms. We extracted experiments of both primary and metastatic tumors, but not

experiments where tumor incidence was reported. To account for these different measures of tumor

volume, SMDs were calculated using Hedges’ g. Hedges’ g is a widely accepted standardized

measure of effect in meta-analyses where units are not always identical. For experiments where more

than one dose of sunitinib was tested against the same control arm, we created a pooled SMD to

adjust appropriately for the multiple use of the same control group. Data were extracted at baseline

(Day 0 and defined as the first day of drug administration), Day 14 (the closest measured data point to

14 days following first dose), and the last common time point (LCT) between the control group and

the treatment group. The LCT was variable between experiments and the last time point for which we

could calculate SMD and often represented the point at which the greatest difference was observed

between the arms. Data presented graphically were extracted using the graph digitizer software

GraphClick (Arizona Software). Extraction was performed by four independent and trained coders

Henderson et al. eLife 2015;4:e08351. DOI: 10.7554/eLife.08351 10 of 13
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(VCH, ND, AH, and NM) using DistillerSR. There was a 12% double-coding overlap to minimize inter-

rater heterogeneity and prevent coder drift. Discrepancies in double coding were reconciled through

discussion, and if necessary, by a third coder. The gross agreement rate before reconciliation for all

double-coded studies was 83%.

Meta-analysis
Effect sizes were calculated as SMDs using Hedges’ g with 95% confidence intervals. Pooled effect sizes

were calculated using a random effects model employing the DerSimonian and Laird (1986)method, in

OpenMeta[Analyst] (Wallace et al., 2009). We also calculated heterogeneity within each malignancy

using I2 statistics (Figure 2—source data 1B). To assess the predictive value of preclinical studies in our

sample, we calculated pooled effect sizes for each type of malignancy. Subgroup analyses were

performed for each validity element. p-values were calculated by a two-sided independent group T-test.

Statistical significance was set at a p-value <0.05; as this was an exploratory study we did not adjust for

multiple analyses.

Funnel plots to assess publication bias and Duval and Tweedie’s trim and fill estimates were

generated using Comprehensive Meta Analyst software (Dietz et al., 2014). Funnel plots were created

for all experiments in aggregate, and for the three indications for which greater than 20 experiments

were analyzable.

Dose–response curves are a widely used tool for testing the strength of causal relationships

(Hill, 1965), and if preclinical studies indicate real drug-responses, we should be able to detect

a dose–response effect across different experiments. Dose–response relationships were found in

post-analysis of sunitinib clinical studies in metastatic RCC and Gastrointestinal stromal tumour

(GIST) (Houk et al., 2010). We tested for all indications in aggregate, as well as for RCC, an

indication known to respond to sunitinib in human beings (Motzer et al., 2006a, 2006b, 2009). To

eliminate variation at the LCT between treatment and control arms, dose–response curves were

created using data from a time point 14 days from the initiation of sunitinib treatment. Experiments

with more than one treatment arm were not pooled as in other analyses, but expanded out so that

each treatment arm (with it’s respective dose) could be plotted properly. As we were unable to find

experiments that reported drug exposure (e.g., drug serum levels), we calculated pooled effect

sizes in OpenMeta[Analyst] and plotted against dose. To avoid the confounding effect of

discontinuous dosing, we included only experiments that used a regular administration schedule

without breaks (i.e., sunitinib administered at a defined dose once a day instead of experiments

where sunitinib was dosed more irregularly or only once).

As this meta-analysis was exploratory and involved development of methodology, we did not

prospectively register a protocol.
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Stables J, White HS, O’Brien TJ, Simonato M, American Epilepsy Society Basic Science Committee And
The International League Against Epilepsy Working Group On Recommendations For Preclinical Epilepsy
Drug Discovery. 2012. Identification of new epilepsy treatments: issues in preclinical methodology. Epilepsia
53:571–582. doi: 10.1111/j.1528-1167.2011.03391.x.

Glasziou P, Altman DG, Bossuyt P, Boutron I, Clarke M, Julious S, Michie S, Moher D, Wager E. 2014. Reducing
waste from incomplete or unusable reports of biomedical research. Lancet 383:267–276. doi: 10.1016/S0140-
6736(13)62228-X.

Han JY, Kim HY, Lim KY, Han JH, Lee YJ, Kwak MH, Kim HJ, Yun T, Kim HT, Lee JS. 2013. A phase II study of
sunitinib in patients with relapsed or refractory small cell lung cancer. Lung Cancer 79:137–142. doi: 10.1016/j.
lungcan.2012.09.019.

Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. 2014. Clinical development success rates for
investigational drugs. Nature Biotechnology 32:40–51. doi: 10.1038/nbt.2786.

Henderson VC, Kimmelman J, Fergusson D, Grimshaw JM, Hackam DG. 2013. Threats to validity in the design and
conduct of preclinical efficacy studies: a systematic review of guidelines for in vivo animal experiments. PLOS
Medicine 10:e1001489. doi: 10.1371/journal.pmed.1001489.

Hill AB. 1965. The environment and disease: association or causation? Proceedings of the Royal Society of Medicine
58:295–300.

Hirst TC, Vesterinen HM, Sena ES, Egan KJ, Macleod MR, Whittle IR. 2013. Systematic review and meta-analysis of
temozolomide in animal models of glioma: was clinical efficacy predicted? British Journal of Cancer 108:64–71.
doi: 10.1038/bjc.2012.504.

Henderson et al. eLife 2015;4:e08351. DOI: 10.7554/eLife.08351 12 of 13

Research article Epidemiology and global health | Human biology and medicine



Hooijmans CR, Tillema A, Leenaars M, Ritskes-Hoitinga M. 2010. Enhancing search efficiency by means of a search
filter for finding all studies on animal experimentation in PubMed. Laboratory Animals 44:170–175. doi: 10.1258/
la.2010.009117.

Houk BE, Bello CL, Poland B, Rosen LS, Demetri GD, Motzer RJ. 2010. Relationship between exposure to sunitinib
and efficacy and tolerability endpoints in patients with cancer: results of a pharmacokinetic/pharmacodynamic
meta-analysis. Cancer Chemotherapy and Pharmacology 66:357–371. doi: 10.1007/s00280-009-1170-y.

Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, Kalyandrug S, Christian M, Arbuck S,
Hollingshead M, Sausville EA. 2001. Relationships between drug activity in NCI preclinical in vitro and in vivo
models and early clinical trials. British Journal of Cancer 84:1424–1431. doi: 10.1054/bjoc.2001.1796.

Kerbel RS. 2003. Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans:
better than commonly perceived-but they can be improved. Cancer Biology & Therapy 2(4 Suppl 1):S134–S139.

Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. 2010. Improving bioscience research reporting: the
ARRIVE guidelines for reporting animal research. PLOS Biology 8:e1000412. doi: 10.1371/journal.pbio.1000412.

Kilkenny C, Parsons N, Kadyszewski E, Festing MF, Cuthill IC, Fry D, Hutton J, Altman DG. 2009. Survey of the
quality of experimental design, statistical analysis and reporting of research using animals. PLOS ONE 4:e7824.
doi: 10.1371/journal.pone.0007824.

Ko JS, Rayman P, Ireland J, Swaidani S, Li G, Bunting KD, Rini B, Finke JH, Cohen PA. 2010. Direct and differential
suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer
Research 70:3526–3536. doi: 10.1158/0008-5472.CAN-09-3278.

Lau J, Ioannidis JP, Terrin N, Schmid CH, Olkin I. 2006. The case of the misleading funnel plot. BMJ 333:597–600.
doi: 10.1136/bmj.333.7568.597.

MacleodMR, O’Collins T, Howells DW, Donnan GA. 2004. Pooling of animal experimental data reveals influence of
study design and publication bias. Stroke 35:1203–1208. doi: 10.1161/01.STR.0000125719.25853.20.

Maris JM, Courtright J, Houghton PJ, Morton CL, Kolb EA, Lock R, Tajbakhsh M, Reynolds CP, Keir ST, Wu J,
Smith MA. 2008. Initial testing (stage 1) of sunitinib by the pediatric preclinical testing program. Pediatric Blood &
Cancer 51:42–48. doi: 10.1002/pbc.21535.

Morrison SJ. 2014. Time to do something about reproducibility. eLife 3:e03981. doi: 10.7554/eLife.03981.
Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Oudard S, Negrier S, Szczylik C, Pili R, Bjarnason
GA, Garcia-del-Muro X, Sosman JA, Solska E, Wilding G, Thompson JA, Kim ST, Chen I, Huang X, Figlin RA.
2009. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic
renal cell carcinoma. Journal of Clinical Oncology 27:3584–3590. doi: 10.1200/JCO.2008.20.1293.

Motzer RJ, Michaelson MD, Redman BG, Hudes GR, Wilding G, Figlin RA, Ginsberg MS, Kim ST, Baum CM,
DePrimo SE, Li JZ, Bello CL, Theuer CP, George DJ, Rini BI. 2006a. Activity of SU11248, a multitargeted inhibitor
of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with
metastatic renal cell carcinoma. Journal of Clinical Oncology 24:16–24. doi: 10.1200/JCO.2005.02.2574.

Motzer RJ, Rini BI, Bukowski RM, Curti BD, George DJ, Hudes GR, Redman BG, Margolin KA, Merchan JR, Wilding
G, Ginsberg MS, Bacik J, Kim ST, Baum CM, Michaelson MD. 2006b. Sunitinib in patients with metastatic renal
cell carcinoma. JAMA 295:2516–2524. doi: 10.1001/jama.295.21.2516.

O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 2006. 1,026 experimental
treatments in acute stroke. Annals of Neurology 59:467–477. doi: 10.1002/ana.20741.

Peterson JK, Houghton PJ. 2004. Integrating pharmacology and in vivo cancer models in preclinical and clinical
drug development. European Journal of Cancer 40:837–844. doi: 10.1016/j.ejca.2004.01.003.

Pusztai L, Hatzis C, Andre F. 2013. Reproducibility of research and preclinical validation: problems and solutions.
Nature Reviews Clinical Oncology 10:720–724. doi: 10.1038/nrclinonc.2013.171.

Raymond E, Dahan L, Raoul JL, Bang YJ, Borbath I, Lombard-Bohas C, Valle J, Metrakos P, Smith D, Vinik A, Chen
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